在如今的作業中,無人機路面巡查替代傳統的人工巡查,展現出巨大的效率優勢。像高速施工工地這樣的環境下,施工方為了保障施工安全,就需要對施工范圍進行嚴格管控,傳統的人工巡查效率低,受限于地形、時間等問題,容易出現盲點。相比人工,利用無人機進行AI識別則可以逐幀圖像監測,即便是夜晚也能夠利用紅外傳感器進行...
YOLO算法具有以下幾個明顯的優勢:快速高效:YOLO算法采用單次前向傳播的方式進行目標檢測和跟蹤,相比傳統方法的多次掃描圖像,速度更快,適用于實時應用。準確性較高:通過引入先進的卷積神經網絡和相關技術,YOLO算法在目標定位和類別預測方面具有較高的準確性。多尺度處理:YOLO算法通過特征金字塔網絡和多尺度預測技術,可以處理不同大小的目標,并保持對小目標的有效檢測。端到端訓練:YOLO算法可以進行端到端的訓練,避免了多階段處理的復雜性,簡化了算法的實現和使用。慧視AI板卡可以用于大型公共停車場。安徽電力應急目標跟蹤
目標跟蹤(Target Tracking)是近年來計算機視覺領域比較活躍的研究方向之一,它包含從目標的圖像序列中檢測、分類、識別、跟蹤并對其行為進行理解和描述,屬于圖像分析和理解的范疇。從技術角度而言,目標跟蹤的研究內容相當豐富,主要涉及到模式識別、圖像處理、計算機視覺、人工智能等學科知識;同時,動態場景中運動的快速分割、目標的非剛性運動、目標自遮擋和目標之間互遮擋的處理等問題也為目標跟蹤研究帶來了一定的挑戰。由于目標跟蹤在視頻會議、安全監控、導彈制導、醫療診斷、高級人機交互及基于內容的圖像存儲與檢索等方面具有廣泛的應用前景和潛在的經濟價值。安徽電力應急目標跟蹤AI圖像處理板能實現24小時、無間隙信息化監控。
AI智能化檢測是打造領域智慧建設的一大舉措。通過在攝像頭中植入視覺處理AI圖像處理板,定制AI檢測算法,就能夠實現對物體的質量檢測。在智能檢測領域,圖像處理板的性能和算法的精度則是影響檢測效果的關鍵所在。不同行業的作業環境不同,對于圖像處理板的性能需求也就不同。因此,需要根據實際情況選擇合適的AI圖像處理板。像工業生產中的質量檢測,由于工業儀器的精密復雜,就需要高性能的AI圖像處理板,通過大算力實現快速數據處理。
首先攝像機采用的是可見光高清攝像機,具備1920*1080的分辨率,系統視場31.11°×17.8°,其中搜索視場15.8°×15.8°(1080P像素)。而圖像處理則采用慧視開發的RV1126高性能圖像處理板,之所以采用這塊板卡,一方面得益于其低功耗、微型外觀的設計,非常契合“智慧眼”這樣對于空間要求嚴格的應用場景;另一方面RV1126具備2.0TOPS的算力,在國產化方面也十分完整,安全性十足。兩者結合,就能夠形成重量不超過100g的“智慧眼”。在算法的作用下,能夠達到≥50Hz的跟蹤幀率,≥25Hz的檢測幀率,實現捕獲4m*4m目標超過800m、6m*6m目標超過1000m。這就是“機器狼”的智慧化措施,通過一個“小小的”“智慧眼”的加入,便能夠讓其實現許多自動化任務。隨著技術的不斷發展,“機器狼”的形態將會不斷進步,滿足更多多樣化需求。工程師以RK3399核心板為基礎進行定制開發,讓攝像頭更加智能高效,能夠輸出高清流的圖像視頻。
目前,采用圖像識別技術來實現無人機規避其他障礙物是一個有效的方法。通過在無人機上植入圖像識別模塊,這個模塊由圖像處理板和相機組合而成,通過算法的賦能,就能針對不同物體實現快速AI識別,然后實現規避。而在圖像處理板的選擇上,成都慧視開發的Viztra-LE026圖像處理板就十分合適。這塊板卡采用了RV1126開發設計而成,外形呈圓形,體積小巧,尺寸為Ф38mm*12mm,重量只有12g,用在無人機上不會過多占用空間。此外,該板卡功耗≤4W,也不會增加無人機的續航負擔。慧視光電開發的慧視RK3588圖像處理板,采用了國產高性能CPU。四川目標跟蹤技術
工程師以RK3399PRO核心板為基礎進行定制開發,讓攝像頭更加智能高效,能夠輸出高清流的圖像視頻。安徽電力應急目標跟蹤
安全生產一直是發展過程中不變的話題。當前,我國建筑行業正處于高速發展階段,不少建筑工地陸續開工,建筑行業安全也越發受到社會各界的關注。該行業以事故高發、危險系數高而聞名,建筑工人常常暴露于高處墜落、電氣和化學危險以及涉及重型機械和車輛的環境中。一般情況下,工地開工都會對工人進行安全教育培訓,并且設有安全監管人員,但純人力監管,常常因為疏忽大意釀成悲劇。加入科技的力量如監控等設備來輔助人力監管是一個很好的補充,但是傳統監控也需要人守在屏幕前,也具有不小的弊端。于是,慧視光電基于AI圖像處理的監控監管方案就應運而生。安徽電力應急目標跟蹤
在如今的作業中,無人機路面巡查替代傳統的人工巡查,展現出巨大的效率優勢。像高速施工工地這樣的環境下,施工方為了保障施工安全,就需要對施工范圍進行嚴格管控,傳統的人工巡查效率低,受限于地形、時間等問題,容易出現盲點。相比人工,利用無人機進行AI識別則可以逐幀圖像監測,即便是夜晚也能夠利用紅外傳感器進行...
西藏哪些目標檢測
2025-08-25青海快速目標檢測
2025-08-25四川目標跟蹤工程
2025-08-25湖南深度學習AI智能圖像處理
2025-08-25安徽應急救援AI智能高效處理
2025-08-25云南倉儲視頻壓縮與傳輸山區
2025-08-25天津電力應急目標檢測
2025-08-25比較好的目標跟蹤批發商
2025-08-25四川省時省力目標檢測
2025-08-25