刀具監(jiān)測管理系統(tǒng)是我們基于精密加工行業(yè)特征,結(jié)合加工中心、車床等機械加工過程,打造的一款刀具狀態(tài)監(jiān)測和壽命預測分析系統(tǒng),通過采集主軸電流(負載)信號、位置信號、速度信號等30維度+數(shù)據(jù)信號,結(jié)合大數(shù)據(jù)流式處理、自然語言處理等自學習處理算法和行業(yè)多年經(jīng)驗數(shù)據(jù)沉淀,構(gòu)建一套完整的刀具壽命預測和狀態(tài)監(jiān)控管理系統(tǒng),能夠?qū)崿F(xiàn)100%斷刀和崩刃監(jiān)控,磨損監(jiān)控識別率達到99%以上,提供基于刀具狀態(tài)監(jiān)測和壽命預測的異常停機控制模塊,避免因刀具異常導致的產(chǎn)品質(zhì)量損失和異常撞機事故,幫助用戶節(jié)約刀具成本30%以上,100%避免刀具異常帶來的產(chǎn)品質(zhì)量損失,為用戶提供無憂機加工過程管理!刀具健康狀態(tài)監(jiān)測應用越來越廣,用來確保切削工具的性能、壽命和安全性。紹興電力監(jiān)測臺
預測性維護對制造業(yè)在節(jié)省成本損耗、提升企業(yè)的生產(chǎn)效率和產(chǎn)業(yè)智能化升級具有非常重要的意義。國內(nèi)工業(yè)現(xiàn)場的存量設備數(shù)目相當可觀,絕大多數(shù)還沒采用有效的預測性維護方案,尤其是大型旋轉(zhuǎn)類設備,一般都是主要生產(chǎn)運行設備而且故障率相對較高,需要重點監(jiān)控和維護。通過振動分析和診治對旋轉(zhuǎn)類設備進行預防性維護無疑向我們展示了一個極具發(fā)展?jié)摿Φ氖袌觥nA測性維護在不久的未來將愈加凸顯工業(yè)物聯(lián)網(wǎng)中關(guān)鍵的應用優(yōu)勢,市場規(guī)模及需求將快速增長工業(yè)設備的預測性維護的市場需求顯而易見。預防性維護想要產(chǎn)生業(yè)務價值、真正大規(guī)模發(fā)展卻是遇到了兩個難題。首先項目實施成本過高,硬件設備大多依賴進口。比如數(shù)采傳感器、設備等。這導致很多企業(yè)在考慮投入產(chǎn)出比時比較猶豫。其次是技術(shù)需要突破,目前大多數(shù)供應商只實現(xiàn)了設備狀態(tài)的監(jiān)視,真正能實現(xiàn)故障準確預測的落地案例寥寥無幾。供應商技術(shù)和能力還需要不斷升級。預防性維護要想實現(xiàn)更好的應用,要在以下方面實現(xiàn)突破。實現(xiàn)基于預測的維護,提升故障診斷及預測的準確率提高軟硬件產(chǎn)品國產(chǎn)化率,降低實施成本。無錫性能監(jiān)測系統(tǒng)供應商使用數(shù)據(jù)分析和機器學習算法來處理多傳感器數(shù)據(jù),建立模型以監(jiān)測和預測刀具的壽命和健康狀況。
電機狀態(tài)監(jiān)測技術(shù)是一種綜合性的技術(shù),需要綜合運用各種監(jiān)測方法和手段,以實現(xiàn)對電機狀態(tài)的了解和掌握。通過電機狀態(tài)監(jiān)測技術(shù),可以及時發(fā)現(xiàn)并處理潛在問題,提高設備的可靠性和生產(chǎn)效率,降低維護成本,為企業(yè)創(chuàng)造更大的經(jīng)濟效益。還有一些基于數(shù)學模型和人工智能的故障診斷方法,如基于神經(jīng)網(wǎng)絡的故障診斷、基于支持向量機的故障診斷等。這些方法主要是利用電機的數(shù)學模型或歷史數(shù)據(jù),結(jié)合機器學習、深度學習等人工智能技術(shù),對電機的狀態(tài)進行估計和預測。電機狀態(tài)監(jiān)測是確保電機正常運行和延長其使用壽命的關(guān)鍵技術(shù)之一。通過綜合運用各種監(jiān)測方法和手段,可以及時發(fā)現(xiàn)并處理潛在問題,提高設備的可靠性和生產(chǎn)效率。同時,電機狀態(tài)監(jiān)測技術(shù)還可以為設備的預測性維護和優(yōu)化運行提供有力支持。
故障診斷可以根據(jù)狀態(tài)監(jiān)測系統(tǒng)提供的信息來查明導致系統(tǒng)某種功能失調(diào)的原因或性質(zhì),判斷劣化發(fā)生的部位或部件,以及預測狀態(tài)劣化的發(fā)展趨勢等。電機故障診斷基本法主要有:1、電氣分析法,通過頻譜等信號分析方法對負載電流的波形進行檢測從而診斷出電機設備故障的原因和程度;檢測局部放電信號;對比外部施加脈沖信號的響應和標準響應等;2、絕緣診斷法,利用各種電氣試驗裝置和診斷技術(shù)對電機設備絕緣結(jié)構(gòu)和參數(shù)、工作性能是否存在缺陷做出判斷,并對絕緣壽命做出預測;3、溫度檢測方法,采用各種溫度測量方法對電機設備各個部位的溫升進行監(jiān)測,電機的溫升與各種故障現(xiàn)象相關(guān);4、振動與噪聲診斷法,通過對電機設備振動與噪聲的檢測,并對獲取的信號進行處理,診斷出電機產(chǎn)生故障的原因和部位,尤其是對機械上的損壞診斷特別有效。5、化學診斷的方法,可以檢測到絕緣材料和潤滑油劣化后的分解物以及一些軸承、密封件的磨損碎屑,通過對比其中一些化學成分的含量,可以判斷相關(guān)部位元件的破壞程度。溫度監(jiān)測是電機監(jiān)測中常用的一種方法,通過埋置在電機內(nèi)部的溫度傳感器,實時監(jiān)測電機的運行溫度。
傳統(tǒng)維護模式中的故障后維護與定期維護將影響生產(chǎn)效率與產(chǎn)品質(zhì)量,并大幅提高制造商的成本。隨著物聯(lián)網(wǎng)、大數(shù)據(jù)、云計算、機器學習與傳感器等技術(shù)的成熟,預測性維護技術(shù)應運而生。以各類如電機、軸承等設備為例,目前已發(fā)展到較為成熟的在線持續(xù)監(jiān)測階段,來實現(xiàn)查看設備是否需要維護、怎么安排維護時間來減少計劃性停產(chǎn)等,并能夠快速、有效通過物聯(lián)網(wǎng)接入到整個網(wǎng)絡,將數(shù)據(jù)回傳至管理中心,來實現(xiàn)電機設備的預測性維護。以各類如電機、軸承等設備為例,目前已發(fā)展到較為成熟在線持續(xù)監(jiān)測階段,來實現(xiàn)查看設備是否需要維護、怎么安排維護時間來減少計劃性停產(chǎn)等,并能夠快速、有效的通過物聯(lián)網(wǎng)接入到整個網(wǎng)絡,將數(shù)據(jù)回傳至管理中心,來實現(xiàn)電機設備的預測性維護。先進的電機監(jiān)測技術(shù),如基于數(shù)學模型和人工智能的故障診斷方法,可以實現(xiàn)對電機狀態(tài)的精確估計和預測。。嘉興混合動力系統(tǒng)監(jiān)測
隨著技術(shù)的發(fā)展,設備狀態(tài)監(jiān)測在工業(yè)、物聯(lián)網(wǎng)等領域的應用越來越多。紹興電力監(jiān)測臺
電機狀態(tài)監(jiān)測和故障診斷技術(shù)是一種了解和掌握電機在使用過程中狀態(tài),確定其整體或局部正常或異常,早期發(fā)現(xiàn)故障及其原因,并能預報故障發(fā)展趨勢的技術(shù),電機狀態(tài)監(jiān)測與故障診斷技術(shù)包括識別電機狀態(tài)監(jiān)測和預測發(fā)展趨勢兩方面。設備狀態(tài)是指設備運行的工況,由設備運行過程中的各種性能參數(shù)以及設備運行過程中產(chǎn)生的二次效應參數(shù)和產(chǎn)品質(zhì)量指標參數(shù)來描述。設備狀態(tài)的類型包括:正常、異常和故障三種。設備狀態(tài)監(jiān)測是通過測定以上參數(shù),并進行分析處理,根據(jù)分析處理結(jié)果判定設備狀態(tài)。對設備進行定期或連續(xù)監(jiān)測,包括采用各種測試、分析判別方法,結(jié)合設備的歷史狀況和運行條件,弄清設備的客觀狀態(tài),獲取設備性能發(fā)展的趨勢規(guī)律,為設備的性能評價、合理使用、安全運行、故障診斷及設備自動控制打下基礎。電機故障現(xiàn)代分析方法:基于信號變換的診斷方法電機設備的許多故障信息是以調(diào)制的形式存在于所監(jiān)測的電氣信號及振動信號之中,借助于某種變換對這些信號進行解調(diào)處理,就能方便地獲得故障特征信息,以確定電機設備所發(fā)生的故障類型。常用的信號變換方法有希爾伯特變換和小波變換。紹興電力監(jiān)測臺