傳統維護模式中的故障后維護與定期維護將影響生產效率與產品質量,并大幅提高制造商的成本。隨著物聯網、大數據、云計算、機器學習與傳感器等技術的成熟,預測性維護技術應運而生。以各類如電機、軸承等設備為例,目前已發展到較為成熟的在線持續監測階段,來實現查看設備是否需要維護、怎么安排維護時間來減少計劃性停產等,并能夠快速、有效的通過物聯網接入到整個網絡,將數據回傳至管理中心,來實現電機設備的預測性維護。以各類如電機、軸承等設備為例,目前已發展到較為成熟在線持續監測階段,來實現查看設備是否需要維護、怎么安排維護時間來減少計劃性停產等,并能夠快速、有效的通過物聯網接入到整個網絡,將數據回傳至管理中心,來實現電機設備的預測性維護。實現工業互聯網。利用遠程監測設備,可以通過網絡遠程監控設備狀態。這對于分布在不同地點的設備來說尤其重要。紹興發動機監測技術
電機的振動監測是評估電機運行狀態的重要手段。電機振動可能是由于多種原因引起的,如軸承損壞、不平衡、軸向偏移、電機定子或轉子損傷等。為了監測電機的健康情況,可以采用振動監測技術。振動監測通常通過安裝振動傳感器在電機上實現,這些傳感器可以實時監測電機的振動情況。如果振動超過正常范圍,系統可以發出警報并停機,以防止設備損壞。此外,振動監測還可以提供關于電機運行狀態的詳細信息,幫助工程師進行故障診斷和預測性維護。除了振動監測,還可以結合其他監測技術,如溫度監測、潤滑油監測、電流監測和聲音監測等,來更好地評估電機的運行狀態。這些技術可以相互補充,提供更好的故障診斷和預測性維護信息。總之,電機的振動監測是確保電機正常運行和延長其使用壽命的關鍵技術之一。通過實時監測和分析電機的振動情況,可以及時發現并處理潛在問題,提高設備的可靠性和生產效率。南京功能監測價格使用聲學傳感器來監測切削過程中產生的聲音。不同的切削狀態和刀具健康狀況可能產生不同的聲音特征。
隨著電力電子技術、自動化控制技術的不斷發展,電機在工業生產以及家用電器中得到了大的應用,在市場競爭中正逐步顯示自己的優勢。傳統的電機在線監測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數的方式進行數據的測量、記錄和分析,這不僅硬件冗余,系統雜亂,而且操作極為不便,更有甚者,讀數誤差大,測試結果不準確。有些場合需要進行電機多種參數監測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統的監測方法要求監測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態和故障。技術實現要素:本發明提出了一種電機在線監測裝置和方法,通過對扭矩、轉速、各相電流、電壓、溫度、輸入、輸出功率和效率進行實時動態的監測以及對過電壓、過電流、過熱進行報警停機,解決現有技術中監測參數不能定量分析以及無法更加準確、實時的掌握電機運行狀態和故障的技術問題。
電機狀態監測技術是一種了解和掌握電機在運行過程中的狀態,以及確定其整體或局部是否有異常或故障的技術。這種技術可以早期發現故障及其原因,并預測故障的發展趨勢,從而為設備的維護、修理和更換提供決策依據。電機狀態監測技術主要包括以下幾種:振動監測技術:通過對電機運行過程中產生的振動信號進行測量和分析,可以判斷電機是否存在故障。常見的振動監測方法包括加速度計法、速度計法和位移計法等。溫度監測技術:通過埋置在電機內部的溫度傳感器,對電機運行過程中的溫度信號進行檢測和分析,可以判斷電機是否存在過熱等故障。溫度監測是電機狀態監測中常用的一種方法。電流監測技術:通過對電機的電流進行監測,可以判斷電機是否正常運行。例如,電流過高或過低可能意味著電機受阻或負載過重。聲音監測技術:通過采集電機的聲音信號,并對其進行分析和處理,可以判斷電機是否存在故障。聲音監測技術常用于電機的故障診斷和預測性維護。光學監測技術:利用光學傳感器或攝像頭等設備,對電機的運行狀態進行實時監測和分析。光學監測技術可以幫助設備操作員及時發現異常情況,例如電機的偏移、卡住或損壞等。 設備監測可以滿足對部件疲勞程度診斷、機械摩擦磨損、機械沖擊、部件過熱等健康狀況問題的實時預警。
故障診斷可以根據狀態監測系統提供的信息來查明導致系統某種功能失調的原因或性質,判斷劣化發生的部位或部件,以及預測狀態劣化的發展趨勢等。電機故障診斷基本法主要有:1、電氣分析法,通過頻譜等信號分析方法對負載電流的波形進行檢測從而診斷出電機設備故障的原因和程度;檢測局部放電信號;對比外部施加脈沖信號的響應和標準響應等;2、絕緣診斷法,利用各種電氣試驗裝置和診斷技術對電機設備的絕緣結構和參數、工作性能是否存在缺陷做出判斷,并對絕緣壽命做出預測;3、溫度檢測方法,采用各種溫度測量方法對電機設備各個部位的溫升進行監測,電機的溫升與各種故障現象相關;4、振動與噪聲診斷法,通過對電機設備振動與噪聲的檢測,并對獲取的信號進行處理,診斷出電機產生故障的原因和部位,尤其是對機械上的損壞診斷特別有效。5、化學診斷的方法,可以檢測到絕緣材料和潤滑油劣化后的分解物以及一些軸承、密封件的磨損碎屑,通過對比其中一些化學成分的含量,可以判斷相關部位元件的破壞程度。刀具健康狀態監測是在制造和加工領域中的重要應用之一,它旨在實時監測和評估刀具的狀態。寧波仿真監測特點
使用溫度傳感器來監測電機各個部件溫度。過高的溫度表明電機運行不正常,由于負載過大、繞組問題等原因。紹興發動機監測技術
傳統方法通常無法自適應提取特征, 同時需要一定的離線數據訓練得到檢測模型, 但目標對象在線場景下采集到的數據有限, 且其數據分布與訓練數據的分布可能因隨機噪聲、變工況等原因而存在差異, 導致離線訓練的模型并不完全適合于在線數據, 容易降低檢測結果的準確性; 其次, 上述方法通常采用基于異常點的檢測算法, 未充分考慮樣本前后的時序關系, 容易因數據微小波動而產生誤報警, 降低檢測結果的魯棒性; 再次, 為降低誤報警, 這類方法需要反復調整報警閾值. 此外, 基于系統分析的故障診斷方法利用狀態空間描述建立機理模型, 可獲得理想診斷和檢測結果, 但這類方法通常需要提前知道系統運動方程等信息, 對于軸承運行來說, 這類信息通常不易獲知. 近年來, 深度神經網絡已被成功應用于早期故障特征自動提取和識別, 可自適應地提取信息豐富和判別能力強的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量輔助數據進行模型訓練, 而歷史采集的輔助數據與目標對象數據可能存在較大不同, 直接訓練并不能有效提升在線檢測的特征表示效果; 另一方面, 在訓練過程中未能針對早期故障引發的狀態變化而有目的地強化相應特征表示. 因此, 深度學習方法在早期故障在線監測中的應用仍存在較大的提升空間.紹興發動機監測技術