電機作為工業世界的支柱,在發電、制造和運輸業等各機械領域發揮著至關重要的作用。電機*常見的應用場景如:泵、壓縮機、鼓風機、風扇、機床、起重機、輸送機和電動汽車等。全球產生的總電能的50%以上用于電機,感應電機消耗了約60%的工業電力。由于低成本、堅固耐用、功率重量比高以及對各種操作條件的適應性,感應電機在所有行業的部署中的應用范圍都穩步提升。感應電機的可靠性至關重要,以確保該后續流程工業的健康持續運行。然而,感應電機面臨的不可避免的熱應力、環境變化、機械應力、外部負載變化、電流偏差、潤滑不足和密封不良、多塵環境、制造缺陷和自然老化等因素。使得其不可避免的產生一些意外故障。這些故障若在其初級階段被忽視,極易導致災難性的電機故障和次生災害,如流程關閉及嚴重的人員傷亡,這就帶來巨大的經濟損失和負面社會效應。為了避免發生災難性電機故障的可能性,業界產生對開始退化的感應電機組件進行了早期狀態監測和故障診斷的需求。狀態監測可在其整個使用壽命期間對感應電機的各種部件進行持續評估。感應電機故障的早期診斷,對即將發生的故障提供足夠的警告,為企業提供基于狀態的維護和*短停機時間建議。通俗地說。監測工作需要關注消費者的購買行為和偏好,以提高銷售效果。紹興非標監測系統
現代化生產企業為了極大限度地提高生產水平和經濟效益,不斷地向規模化和高技術技術含量發展,因此生產裝置趨向大型化、高速高效化、自動化和連續化,人們對設備的要求不僅是性能好,效率高,還要求在運行過程中少出故障,否則因故障停機帶來的損失是十分巨大的。國內外化工、石化、電力、鋼鐵和航空等部門,從許多大型設備故障和事故中逐漸認識到開展設備故障診斷的重要性。管理好用好這些大型設備,使其安全、可靠地運行,成為設備管理中的突出任務。對于單機連續運行的生產設備,停機損失巨大的大型機組和重大設備,不宜解體檢查的高精度設備以及發生故障后會引起公害的設備。傳統的事后和定期維修帶來的過剩維修或失修,使維修費用在生產成本中所占比重很大。狀態監測維修是在設備運行時,對它的各個主要部位產生的物理、化學信號進行狀態監測,掌握設備的技術狀態,對將要形成或已經形成的故障進行分析診斷,判定設備的劣化程度和部位,在故障產生前制訂預知性維修計劃,確定設備維修的內容和時間。因此狀態監測維修既能經常保持設備的完好狀態,又能充分利用零部位的使用壽命,從而延長大修間隔,減少故障停機損失。杭州設備監測系統工業監測數據可以幫助企業優化生產流程和降低成本。
智能船舶是指基于“網絡平臺”的信息技術應用,以“大數據”為基礎,通過數據分析和數據處理,實現運行船舶的智能感知、判斷分析和決策控制,從技術、設備、管理等多個層面保證船舶航行的安全和效率,大幅減少甚至杜絕人為或外部因素造成的各種事故。其主要目標就是安全、經濟、高效、環保。而智能機艙是通過綜合狀態監測系統所獲得的設備信息和數據,實現對機艙內機械設備的運行狀態、健康狀況進行分析和評估,進而完成設備操作輔助決策和維護保養計劃的綜合管控系統。它能及時地、準確地對多種異常狀態或故障狀態做出診斷,預防或消除故障,把故障損失降低到較低水平,同時對設備的運行進行必要的決策支持,提高設備運行的可靠性、安全性和有效性,也能確定設備的良好維護時間,降低設備全壽命周期費用,增加設備的穩定性。近日,盈蓓德成功交付了InsightlO智能監測系統,就是智能船舶中的智能機艙系統,這一創新技術將為船舶行業帶來全新的智能化管理體驗,標志著船舶行業智能化新篇章的開啟。InsightlO智能監測系統是盈蓓德經過長期研發和測試的成果,該系統能夠實時監測機艙設備的各項運行數據。
隨著電力電子技術、自動化控制技術的不斷發展,電機在工業生產以及家用電器中得到了應用,在市場競爭中正逐步顯示自己的優勢。傳統的電機在線監測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數的方式進行數據的測量、記錄和分析,這不僅硬件冗余,系統雜亂,而且操作極為不便,更有甚者,讀數誤差大,測試結果不準確。有些場合需要進行電機多種參數的監測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統的監測方法要求監測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態和故障。
技術實現要素:本發明提出了一種電機在線監測裝置和方法,通過對扭矩、轉速、各相電流、電壓、溫度、輸入、輸出功率和效率進行實時動態的監測以及對過電壓、過電流、過熱進行報警停機,解決現有技術中監測參數不能定量分析以及無法更加準確、實時的掌握電機運行狀態和故障的技術問題。 監測工作需要定期進行,以保持對市場的敏感度和洞察力。
故障預測與健康管理是以工業監測數據為基礎,通過數學優化、統計概率、信號處理、機器學習和統計學習等技術搭建模型算法,實現產品和裝備的狀態監測、故障診斷及壽命預測,為產品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。故障預測與健康管理是以工業監測數據為基礎,通過高等數學、數學優化、統計概率、信號處理、機器學習和統計學習等技術搭建模型算法,實現產品和裝備的狀態監測、故障診斷及壽命預測,為產品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。近年來我們提出的標準化平方包絡和數學框架以及準算數均值比數學框架指引了稀疏測度構造的新方向,同時發現了大量與基尼指數、峭度、香農熵等具有等價性能的稀疏測度。基于標準化平方包絡和數學框架以及凸優化技術,提出了在線更新模型權重可解釋的機器學習算法,可以利用模型權重來實時確認故障特征頻率,解決了狀態監測與故障診斷領域傳統機器學習只能輸出狀態,而無法提供故障特征來確認輸出狀態的難題。監測工作需要及時更新數據,以保持對市場的了解。仿真監測
監測工作需要持續進行,以確保數據的實時性和準確性。紹興非標監測系統
在預防性維護的應用中,振動是大型旋轉等設備即將發生故障的重要指標,一是在大型旋轉機械設備的所有故障中,振動問題出現的概率比較高;另一方面,振動信號包含了豐富的機械及運行的狀態信息;第三,振動信號易于拾取,便于在不影響機械運行的情況下實行在線監測和診斷。旋轉類設備的預防性維護需要重點監控振動量的變化。其預測性診斷技術對于制造業、風電等的行業的運維具有非常重大的意義。通過設備振動等狀態的預測性維護,可以及時發現并解決系統及零部件存在問題。但是對于一些不是因為設備問題而存在的固有振動,振動強度不必要增加會對部件產生有害的力,危及設備的使用壽命和質量。在這種情況下,則需要采用振動隔離技術來解決和干預,有效抑制振動和噪聲的危害,避免設備故障和流程關閉。紹興非標監測系統