作為工業領域的一種關鍵旋轉設備,對于終端用來說,關于電機維護的主要是電氣班組的設備工程師、電機維護工程師、電機檢修人員等;對于電機廠家以及電機經銷商來說,主要是電機售后服務工程師、電機銷售人員,會涉及到電機的運行維護;險此之外,還有第三方檢修人員等。目前已經有很多智能產品號稱可以實現電機的預測性維護,但問題也非常多。1)傳感器安裝難。設備狀態監測需要振動、噪聲、溫度傳感器,通訊協議并不統一,自成體系,安裝、使用、維護成本高昂。2)技術成本高。工業場景設備類型多,運行工況復雜,預測性維護算法涉及數據預處理、工業機理、機器學習,技術要求很高。3)時間成本高。預測性維護要實現,前期需要大量歷史數據的支撐,數據采集、歸納、分析是一個漫長的過程。以電機預測性維護理念來對電機智能運維,雖然被各大宣傳媒體提得很多,但還遠遠未到落地很好乃至普及的程度,不論是預測性維護的預測效果,還是電機的智能運維的市場推廣以及市場接受程度,對于電機維護人員為**的電機運維來說,都還有很遠的一段距離!電機監測和故障預判系統是實現工業設備數智化管理和預測性維護的關鍵。南通研發監測數據
工業設備的預測性維護的市場需求顯而易見,但是預防性維護想要產生業務、真正大規模發展卻是遇到了兩個難題。首先項目實施成本過高,硬件設備大多依賴進口。比如數采傳感器、設備等。這導致很多企業在考慮投入產出比時比較猶豫。其次是技術需要突破,目前大多數供應商只實現了設備狀態的監視,真正能實現故障準確預測的落地案例寥寥無幾。供應商技術和能力還需要不斷升級。預防性維護要想實現更好的應用,要在以下方面實現突破。實現基于預測的維護,提升故障診斷及預測的準確率提高軟硬件產品國產化率,降低實施成本。溫州設備監測技術盈蓓德科技開發的監測系統實現了對電動機(馬達)等旋轉設備關鍵參數實時監測,掌握設備運行狀態。
電機故障監測系統,電機狀態檢測儀。電機故障監測系統是采用現代電子技術和傳感器技術,對電動機運行過程中的各種參數進行實時在線檢測、分析、處理并作出相應報警或指示的裝置。其基本功能包括:1、對電動機的絕緣電阻、溫升等常規電氣參數和振動、噪聲等機械量進行測量;2、通過設定值比較法確定電機的實際工況;3、根據設定的報警閾值或動作時間發出聲光報警信號;4、通過通訊接口與plc或其它自動化設備相連實現遠程控制。設備監測是指對設備運行狀態進行實時或定期的監測和檢測,以獲取設備的關鍵性能指標、故障信息等數據,并對這些數據進行分析、處理和解釋,以便及時發現設備的健康狀況,并根據監測結果制定相應的維護計劃和改進措施。設備監測通常通過傳感器、監測系統、計算機軟件等技術手段進行實現,以提高設備的可靠性、可用性和效率,降低設備故障率和維修成本,提高設備的生命周期價值。設備監測在制造業、能源、交通、建筑、環保等領域得到廣泛應用。設備監測一般分為以下步驟:①從設備上收集數據;②將收集到的數據傳輸至平臺;③監控和分析收集到的設備數據。
隨著科技發展, 各類工程設備的工作和運行環境變得越來越復雜. 作為機械設備的關鍵零部件, 滾動軸承在長期大載荷、強沖擊等復雜工況下, 極易產生各種故障, 導致機械工作狀況惡化. 針對軸承的故障預測與健康管理技術應運而生. 若能在故障發生初期即進行準確、可靠的檢測和診斷, 則有助于進行及時維修, 避免嚴重事故的發生. 早期故障檢測已成為PHM的關鍵技術環節之一. 近年來, 隨著傳感技術和機器學習技術的快速發展, 數據驅動的智能化故障檢測和診斷技術受到更多人的關注. 如何利用歷史采集的狀態監控數據、提高目標軸承早期故障檢測結果的準確性和穩定性成為研究熱點和難點, 具有明確的學術價值和應用需求.本文關注的是不停機情況下的早期故障在線檢測問題. 這種方式有助于實時評估軸承工作狀態, 避免因等待停機檢查而產生延誤、造成經濟損失, 因此對早期故障的在線檢測越來越受到工業界的重視。盈蓓德科技開發的電機監測和故障預判系統,助力實現工業設備數智化管理和預測性維護。
低信噪比微弱信號特征早期故障的信號處理。早期故障信息具有明顯的低信噪比微弱信號的特征,為實現早期故障有效分析,涉及方法包括:多傳感系統檢測及信息融合,非平穩及非線性信號處理,故障征兆量和損傷征兆量信號分析,噪聲規律與特點分析,以及相關數據挖掘、粗糙集等方法。故障預測模型構建。構建基于智能信息系統的設備早期故障預測模型,這類模型大致有兩個途徑,分別是物理信息預測模型以及數據信息預測模型,或構建這兩類預測模型相融合的預測模型。運行狀態劣化的相關評價參數、模式及準則。如表征設備狀態發展的參數及特征模式,狀態發展評價準則及條件,面向安全保障的決策理論方法,穩定性、可靠性及維修性評估依據及判據等。物聯網聲學監控系統以音頻數據,輔以其他設備參數,通過物聯網技術實現設備狀態的遠程感知,基于AI神經網絡技術,計算并提取設備音頻特征,從而實現設備運行狀態的實時評估與故障的早期識別。幫助企業用戶提升生產效率,保證生產安全,優化生產決策。電機設備的許多故障信息可以通過信號變換的診斷方法以調制的形式存在于所監測的電氣信號及振動信號之中。南通研發監測臺
設備狀態監測診斷分析系統實現大型旋轉設備參數狀態監測、統計分析、預警報警、多維診斷和智能巡檢等功能。南通研發監測數據
隨著電力電子技術、自動化控制技術的不斷發展,電機在工業生產以及家用電器中得到了***的應用,在市場競爭中正逐步顯示自己的優勢。傳統的電機在線監測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數的方式進行數據的測量、記錄和分析,這不僅硬件冗余,系統雜亂,而且操作極為不便,更有甚者,讀數誤差大,測試結果不準確。有些場合需要進行電機多種參數的監測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統的監測方法要求監測人員具有較高技能和水平,但是由于人為誤差的不可避免,這種監測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態和故障。技術實現要素:本發明提出了一種電機在線監測裝置和方法,通過對扭矩、轉速、各相電流、電壓、溫度、輸入、輸出功率和效率進行實時動態的監測以及對過電壓、過電流、過熱進行報警停機,解決現有技術中監測參數不能定量分析以及無法更加準確、實時的掌握電機運行狀態和故障的技術問題。南通研發監測數據