基于交流電機的特征量:通過故障機理的分析可知,交流電機運行過程中,其故障與否必然表現(xiàn)為一些特征參量的變化,根據(jù)診斷需要,選擇有代表性的特征參量為該設(shè)備在線監(jiān)測的被測信號,準確地提取這些故障特征量,這是故障診斷的關(guān)鍵。故障特征量,特別是反映早期故障征兆的信號往往比較弱,而相應的背景噪聲比較弱,常規(guī)的監(jiān)測方法,因受傳感器的準確性、微處理器的速度、A/D轉(zhuǎn)換的分辨率與轉(zhuǎn)換速度等硬件條件的限制,以及一般的數(shù)據(jù)處理方式的不足,很難滿足提取這些特征量的要求,需要采用一些特殊的電工測量手段與信號處理方法。例如小波變換原理的應用。電機故障的現(xiàn)代分析方法:基于信號變換的診斷方法電機設(shè)備的許多故障信息是以調(diào)制的形式存在于所監(jiān)測的電氣信號及振動信號之中,如果借助于某種變換對這些信號進行解調(diào)處理,就能方便地獲得故障特征信息,以確定電機設(shè)備所發(fā)生的故障類型。常用的信號變換方法有希爾伯特變換和小波變換。電機監(jiān)測系統(tǒng)可以預判電機故障,防止代價高昂的停機并提高設(shè)備性能。杭州旋轉(zhuǎn)機械監(jiān)測價格
刀具監(jiān)測主要采用人工檢測、離線檢測和在線檢測三種策略。人工檢查是指工人在加工過程中可以憑經(jīng)驗檢查刀具的狀態(tài);離線檢測是在加工前專門對刀具進行檢測,預測其壽命,看是否能勝任當前的加工;在線檢測又稱實時檢測,是在加工過程中對刀具進行實時檢測,并根據(jù)檢測結(jié)果做出相應的處理。目前刀具檢測的算法有很多,有的是利用理論計算刀具上應力的變化來判斷刀具的損傷.有的是利用時間序列分析來檢測刀具,有的是利用神經(jīng)網(wǎng)絡(luò)技術(shù)來檢測刀具。還有的是利用小波變換理論和神經(jīng)網(wǎng)絡(luò)技術(shù)來檢測刀具,但都是以理論為主。考慮到刀具的塑性損傷在數(shù)控加工中很少發(fā)生,磨損對數(shù)控加工安全性影響很小,并且可以通過離線檢測進行加工,通過在線檢測,可以判斷微裂紋在當前載荷條件下是否會擴展。如果有可能擴大,我們認為載 荷是危險的,通過減少刀具的進給量來減少刀具上的載荷,以保證刀具安全性。寧波非標監(jiān)測系統(tǒng)電機狀態(tài)監(jiān)測和故障診斷技術(shù)可以了解和掌握電機使用過程中的狀態(tài),確定其整體或局部正常或異常。
工業(yè)設(shè)備的預測性維護的市場需求顯而易見。但是預防性維護想要產(chǎn)生業(yè)務價值、真正大規(guī)模發(fā)展卻是遇到了兩個難題。首先項目實施成本過高,硬件設(shè)備大多依賴進口。比如數(shù)采傳感器、設(shè)備等。這導致很多企業(yè)在考慮投入產(chǎn)出比時比較猶豫。其次是技術(shù)需要突破,目前大多數(shù)供應商只實現(xiàn)了設(shè)備狀態(tài)的監(jiān)視,真正能實現(xiàn)故障準確預測的落地案例寥寥無幾。供應商技術(shù)和能力還需要不斷升級。預防性維護要想實現(xiàn)更好的應用,要在以下方面實現(xiàn)突破。實現(xiàn)基于預測的維護,提升故障診斷及預測的準確率提高軟硬件產(chǎn)品國產(chǎn)化率,大幅度降低實施成本。
現(xiàn)代化生產(chǎn)企業(yè)為了極大限度地提高生產(chǎn)水平和經(jīng)濟效益,不斷地向規(guī)模化和高技術(shù)技術(shù)含量發(fā)展,因此生產(chǎn)裝置趨向大型化、高速高效化、自動化和連續(xù)化,人們對設(shè)備的要求不僅是性能好,效率高,還要求在運行過程中少出故障,否則因故障停機帶來的損失是十分巨大的。國內(nèi)外化工、石化、電力、鋼鐵和航空等部門,從許多大型設(shè)備故障和事故中逐漸認識到開展設(shè)備故障診斷的重要性。管理好用好這些大型設(shè)備,使其安全、可靠地運行,成為設(shè)備管理中的突出任務。對于單機連續(xù)運行的生產(chǎn)設(shè)備,停機損失巨大的大型機組和重大設(shè)備,不宜解體檢查的高精度設(shè)備以及發(fā)生故障后會引起公害的設(shè)備。傳統(tǒng)的事后和定期維修帶來的過剩維修或失修,使維修費用在生產(chǎn)成本中所占比重很大。狀態(tài)監(jiān)測維修是在設(shè)備運行時,對它的各個主要部位產(chǎn)生的物理、化學信號進行狀態(tài)監(jiān)測,掌握設(shè)備的技術(shù)狀態(tài),對將要形成或已經(jīng)形成的故障進行分析診斷,判定設(shè)備的劣化程度和部位,在故障產(chǎn)生前制訂預知性維修計劃,確定設(shè)備維修的內(nèi)容和時間。因此狀態(tài)監(jiān)測維修既能經(jīng)常保持設(shè)備的完好狀態(tài),又能充分利用零部位的使用壽命,從而延長大修間隔,縮短大修時間,減少故障停機損失。電機狀態(tài)監(jiān)測系統(tǒng)可以判斷潛在故障隱患,診斷故障的性質(zhì)和程度,并預測故障發(fā)展趨勢,給出治理預防策略。
低信噪比微弱信號特征早期故障的信號處理。早期故障信息具有明顯的低信噪比微弱信號的特征,為實現(xiàn)早期故障有效分析,涉及方法包括:多傳感系統(tǒng)檢測及信息融合,非平穩(wěn)及非線性信號處理,故障征兆量和損傷征兆量信號分析,噪聲規(guī)律與特點分析,以及相關(guān)數(shù)據(jù)挖掘、盲源分離、粗糙集等方法。故障預測模型構(gòu)建。構(gòu)建基于智能信息系統(tǒng)的設(shè)備早期故障預測模型,這類模型大致有兩個途徑,分別是物理信息預測模型以及數(shù)據(jù)信息預測模型,或構(gòu)建這兩類預測模型相融合的預測模型。運行狀態(tài)劣化的相關(guān)評價參數(shù)、模式及準則。如表征設(shè)備狀態(tài)發(fā)展的參數(shù)及特征模式,狀態(tài)發(fā)展評價準則及條件,面向安全保障的決策理論方法,穩(wěn)定性、可靠性及維修性評估依據(jù)及判據(jù)等。物聯(lián)網(wǎng)聲學監(jiān)控系統(tǒng)以音頻數(shù)據(jù),輔以其他設(shè)備參數(shù),通過物聯(lián)網(wǎng)技術(shù)實現(xiàn)設(shè)備狀態(tài)的遠程感知,基于AI神經(jīng)網(wǎng)絡(luò)技術(shù),計算并提取設(shè)備音頻特征,從而實現(xiàn)設(shè)備運行狀態(tài)的實時評估與故障的早期識別。幫助企業(yè)用戶提升生產(chǎn)效率,保證生產(chǎn)安全,優(yōu)化生產(chǎn)決策。電機監(jiān)測系統(tǒng)可以識別處于初期階段的機械和液壓故障,從而制定更為合理的輔助維護計劃。嘉興降噪監(jiān)測系統(tǒng)供應商
設(shè)備振動情況信息量豐富,振動測試系統(tǒng)應用于設(shè)備狀態(tài)監(jiān)測,在設(shè)備預知維修中起到了重要的作用。杭州旋轉(zhuǎn)機械監(jiān)測價格
常見的設(shè)備監(jiān)測數(shù)據(jù)包含以下幾類:1.運行數(shù)據(jù):包括設(shè)備的運轉(zhuǎn)時間、運轉(zhuǎn)速度、負載情況、溫度、壓力等參數(shù)。這些數(shù)據(jù)可以反映設(shè)備的運行狀態(tài)和性能表現(xiàn),以便進行運行效率評估、健康狀況評估以及預測維護等。2.電氣數(shù)據(jù):包括設(shè)備的電流、電壓、功率、電阻等參數(shù)。這些數(shù)據(jù)可以反映設(shè)備的電氣性能和電能消耗情況,以便進行能效評估、設(shè)備故障診斷等。3.振動數(shù)據(jù):包括設(shè)備的振動幅值、頻率、相位等參數(shù)。數(shù)據(jù)可以反映設(shè)備的振動情況,以便進行故障診斷和預測維護等。4.聲音數(shù)據(jù):包括設(shè)備的聲音頻率、聲音強度、聲音特征等參數(shù)。這些數(shù)據(jù)可以反映設(shè)備的聲學性能,以便進行故障診斷和預測維護等。5.圖像數(shù)據(jù):包括設(shè)備的照片、視頻、紅外圖像等。這些數(shù)據(jù)可以反映設(shè)備的外觀、結(jié)構(gòu)、熱特性等信息,以便進行故障診斷、安全檢查和維護計劃制定等。6.環(huán)境數(shù)據(jù):包括設(shè)備周圍環(huán)境的溫度、濕度、氣壓、光照等參數(shù)。這些數(shù)據(jù)可以反映設(shè)備所處的環(huán)境條件,以便進行設(shè)備健康評估、預測維護等。杭州旋轉(zhuǎn)機械監(jiān)測價格