隨著電力電子技術、自動化控制技術的不斷發展,電機在工業生產以及家用電器中得到了***的應用,在市場競爭中正逐步顯示自己的優勢。傳統的電機在線監測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數的方式進行數據的測量、記錄和分析,這不僅硬件冗余,系統雜亂,而且操作極為不便,更有甚者,讀數誤差大,測試結果不準確。有些場合需要進行電機多種參數的監測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統的監測方法要求監測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態和故障。技術實現要素:本發明提出了一種電機在線監測裝置和方法,通過對扭矩、轉速、各相電流、電壓、溫度、輸入、輸出功率和效率進行實時動態的監測以及對過電壓、過電流、過熱進行報警停機,解決現有技術中監測參數不能定量分析以及無法更加準確、實時的掌握電機運行狀態和故障的技術問題。一款智能化的監測系統,能夠為企業提供完整的數據監測和分析服務。上海研發監測系統
不停機情況下的早期故障在線監測問題.這種方式有助于實時評估軸承工作狀態,避免因等待停機檢查而產生延誤、造成經濟損失,因此對早期故障的在線檢測越來越受到工業界的重視.由于在線應用場景的制約,與一般故障檢測相比,早期故障在線檢測具有如下需求:1)檢測結果應具有較好的實時性,能盡可能快速準確地識別出早期故障;2)檢測結果應具有較好的魯棒性,能盡可能避免正常狀態下輕微異常波動的影響,相比于漏報警(現有方法對成熟故障檢測已較成熟),更需避免誤報警;3)檢測模型應具有較高的可靠性,在線檢測過程中無需反復進行閾值設定和模型優化.上述需求對檢測方法提出了新的挑戰.在線場景下的早期故障監測基本是采用現有的早期故障監測方法、直接用于在線環境, 其通常做法包括: 從振動信號等監測數據中提取時頻特征、小波特征、包絡譜特征等早期故障特征, 進而構建支持向量機(Support vector machine, SVM)、樸素Bayes分類器、Fisher判別分析、人工神經網絡, 單類(One-class) SVM等機器學習模型進行異常檢測,無錫降噪監測介紹滾動軸承是一個故障多發的零件,需要對其進行電機狀態監測與故障診斷。
目前設備狀態監測及故障預警若干關鍵技術可歸納如下:(1)揭示設備運行狀態機械動態特性劣化演變規律。設備由非故障運行狀態劣化為故障運行狀態,其機械動態特性通常有一個發展演變過程。需揭示劣化過程及故障變化演變規律及發展特點,分析故障產生機理、發展原因和發展模式,構建劣化演變機械動態特性模型。(2)提取設備運行狀態發展趨勢特征。在役設備往往具有復雜運行狀態,在長歷程運行中工況和負載等非故障因素會造成信號能量變化,故障趨勢信息往往被非故障變化信息淹沒,需較大程度上消除非故障變化造成的冗余信息,進而構建預測模型。若提取到敏感特征分量因子及模式,有望實現典型部件及部位分析。
電機等振動設備在運行中,伴隨著一些安全問題,振動數據會發生變化,如果不及時發現,容易導致起火或,造成大量的財產損失,而這些問題具有突發性和不準確性,難以預知,應對這種情況,需要一種手段去解決。無線振動傳感器直接讀取原始加速度數據,準確可靠,避免后期計算出現較大誤差。本傳感器采用無線通訊方式,低功耗設計,一次性鋰亞電池供電,具有容量大、耐高溫、不宜爆等特點。工作原理:將傳感器分布式安裝在各類電機、風機、振動平臺、回轉窯、傳送設備等需要振動監測的設備上實時采集振動數據,然后通過無線方式將數據發送給采集端,采集端將數據解析、顯示或傳輸。系統能實時在線監測出設備異常,發出預警,避免事故發生。
產品特點(1)實時性:系統實時在線監測電機等振動參數,避免了由于電機突然缺相、線圈故障,堵轉、固定螺栓松動、負載過高和人為錯誤操作等發生的事故。(2)便捷性:系統采用無線傳輸方式,傳感器**安裝,解決了以往因為空間狹小、不能布線、安裝成本高等問題。(3)可靠性:系統采用先進成熟的傳感技術和無線傳輸技術,抗干擾力強,傳輸距離遠,讀數準確,可靠性高。 電機的狀態監測,以采集的電機電流和振動信號為例,可以采用多特征融合的故障診斷方法。
通過對電機部分放電、振動、電流特征分析、磁通量和磁芯完整性的在線監測和離線檢測,為電機轉子和定子繞組的狀態維修提供信息。通過監測電機的電流、電壓信號,在自身內部建立數學模型,對被監電機進行自我學習,完成學習后開始進行監測。通過將測量電流與數學模型計算所得電流進行差分比較,得到一組數值,再將該數值通過傅里葉分析,得到一個功率譜密度圖。功率頻譜圖中,各頻率段的突加分量**不同的故障類型,**終給出報告,告知維修團隊應該在接下來多久時間內需對該故障進行處理。維修團隊根據報告,按實際情況采購備件、排產、計劃停機維修,比較低限度的減少了設備停機時間,降低了非計劃性停機帶來的損失。 刀具間接監測手段無需在設備停機或者切削過程間隔中監測,實際應用機會多。南京狀態監測系統供應商
設備狀態監測診斷分析系統主要實現機械設備參數狀態監測、統計分析、預警報警、多維診斷和智能巡檢等功能。上海研發監測系統
著科技發展,各類工程設備的工作和運行環境變得越來越復雜.作為機械設備的關鍵零部件,滾動軸承在長期大載荷、強沖擊等復雜工況下,極易產生各種故障,導致機械工作狀況惡化.針對軸承的故障預測與健康管理(Prognosticsandhealthmanagement,PHM)技術應運而生.若能在故障發生初期即進行準確、可靠的檢測和診斷,則有助于進行及時維修,避免嚴重事故的發生.早期故障監測已成為PHM的關鍵技術環節之一.近年來,隨著傳感技術和機器學習技術的快速發展,數據驅動的智能化故障監測和診斷技術受到***關注.如何利用歷史采集的狀態監控數據、提高目標軸承早期故障檢測結果的準確性和穩定性成為研究熱點和難點,具有明確的學術價值和應用需求.上海研發監測系統
上海盈蓓德智能科技有限公司位于上海市閔行區新龍路1333號28幢328室。公司業務涵蓋智能在線監診系統,西門子Anovis,聲音與振動分析,主動減振降噪系統等,價格合理,品質有保證。公司從事電工電氣多年,有著創新的設計、強大的技術,還有一批專業化的隊伍,確保為客戶提供良好的產品及服務。盈蓓德科技秉承“客戶為尊、服務為榮、創意為先、技術為實”的經營理念,全力打造公司的重點競爭力。