預測性維護對制造業在節省成本損耗、提升企業的生產效率和產業智能化升級具有非常重要的意義。國內工業現場的存量設備數目相當可觀,絕大多數還沒采用有效的預測性維護方案,尤其是大型旋轉類設備,一般都是主要生產運行設備而且故障率相對較高,需要重點監控和維護。通過振動分析和診治對旋轉類設備進行預防性維護無疑向我們展示了一個極具發展潛力的市場。預測性維護在不久的未來將愈加凸顯工業物聯網中關鍵的應用優勢,市場規模及需求將快速增長系統可以實時采集旋轉設備的運行狀態數據,上傳到云平臺進行直觀展示、預警報警、趨勢分析。寧波混合動力系統監測控制策略
動力裝備全壽命周期監測診斷方面:實現了支持物聯網的智能信息采集與管理、全生命周期動態自適應監測、早期非線性故障特征提取。優化重構出綜合體現裝備運行工況及表現的新參數,提高異常狀態辨識的適應性與可靠性,基于運行過程信息反映裝備劣化趨勢與故障發展規律,來提高故障早期辨識能力。動力裝備全生命周期性能優化服務方面:提供了轉子全息動平衡快速響應與服務支持、以全息譜為**的失衡故障確診、動力裝備轉子和軸系平衡配重方案優化。基于物聯網和網絡化監測診斷將產品監測診斷與運行服務支持有機集成一體,在應用中實現動力裝備常見故障診斷準確率達80%以上。可應用于風力大電機、空壓機、氮壓機等大型動力裝備的集群化診斷領域。提供了基于物聯網的動力裝備全生命周期監測與服務支持創新模式,提供了其生命周期的遠程監測診斷與維護等專業化服務。常州NVH監測系統電機故障監測和診斷可根據當前檢測的運行狀態對可能發生的故障進行預判。
刀具監測管理系統是我們基于精密加工行業特征,結合加工中心、車床等機械加工過程,打造的一款刀具狀態監測和壽命預測分析系統,通過采集主軸電流(負載)信號、位置信號、速度信號等30維度+數據信號,結合大數據流式處理、自然語言處理等自學習處理算法和行業多年經驗數據沉淀,構建的一套完整的刀具壽命預測和狀態監控管理系統,能夠實現100%斷刀和崩刃監控,磨損監控識別率達到99%以上,同時,提供基于刀具狀態監測和壽命預測的異常停機控制模塊,避免因刀具異常導致的產品質量損失和異常撞機事故,幫助用戶節約刀具成本30%以上,100%避免刀具異常帶來的產品質量損失,為用戶提供無憂機加工過程管理!
為了避免發生災難性電機故障的可能性,業界產生對開始退化的感應電機組件進行了早期狀態監測和故障診斷的需求。狀態監測可在其整個使用壽命期間對感應電機的各種部件進行持續評估。感應電機故障的早期診斷,對即將發生的故障提供足夠的警告,為企業提供基于狀態的維護和**短停機時間建議。電機故障監測系統,電機狀態檢測儀。電機故障監測系統是采用現代電子技術和傳感器技術,對電動機運行過程中的各種參數進行實時在線檢測、分析、處理并作出相應報警或指示的裝置。其基本功能包括:1、對電動機的絕緣電阻、溫升等常規電氣參數和振動、噪聲等機械量進行測量;2、通過設定值比較法確定電機的實際工況;3、根據設定的報警閾值或動作時間發出聲光報警信號;4、通過通訊接口與plc或其它自動化設備相連實現遠程控制。人工智能和深度學習技術已在滾動軸承故障監測和診斷領域取得了成功應用。
隨著科技發展, 各類工程設備的工作和運行環境變得越來越復雜. 作為機械設備的關鍵零部件, 滾動軸承在長期大載荷、強沖擊等復雜工況下, 極易產生各種故障, 導致機械工作狀況惡化. 針對軸承的故障預測與健康管理技術應運而生. 若能在故障發生初期即進行準確、可靠的檢測和診斷, 則有助于進行及時維修, 避免嚴重事故的發生. 早期故障檢測已成為PHM的關鍵技術環節之一. 近年來, 隨著傳感技術和機器學習技術的快速發展, 數據驅動的智能化故障檢測和診斷技術受到***關注. 如何利用歷史采集的狀態監控數據、提高目標軸承早期故障檢測結果的準確性和穩定性成為研究熱點和難點, 具有明確的學術價值和應用需求.本文關注的是不停機情況下的早期故障在線檢測問題. 這種方式有助于實時評估軸承工作狀態, 避免因等待停機檢查而產生延誤、造成經濟損失, 因此對早期故障的在線檢測越來越受到工業界的重視。監測系統可以實現在任何運行條件下,高精細地監測多種類型的重要機組。紹興設備監測系統
盈蓓德科技能為風機提供早期有效預知傳動鏈故障、軸承損傷、齒輪箱、發電機等故障的狀態監測解決方案。寧波混合動力系統監測控制策略
不停機情況下的早期故障在線監測問題.這種方式有助于實時評估軸承工作狀態,避免因等待停機檢查而產生延誤、造成經濟損失,因此對早期故障的在線檢測越來越受到工業界的重視.由于在線應用場景的制約,與一般故障檢測相比,早期故障在線檢測具有如下需求:1)檢測結果應具有較好的實時性,能盡可能快速準確地識別出早期故障;2)檢測結果應具有較好的魯棒性,能盡可能避免正常狀態下輕微異常波動的影響,相比于漏報警(現有方法對成熟故障檢測已較成熟),更需避免誤報警;3)檢測模型應具有較高的可靠性,在線檢測過程中無需反復進行閾值設定和模型優化.上述需求對檢測方法提出了新的挑戰.在線場景下的早期故障監測基本是采用現有的早期故障監測方法、直接用于在線環境, 其通常做法包括: 從振動信號等監測數據中提取時頻特征、小波特征、包絡譜特征等早期故障特征, 進而構建支持向量機(Support vector machine, SVM)、樸素Bayes分類器、Fisher判別分析、人工神經網絡, 單類(One-class) SVM等機器學習模型進行異常檢測,寧波混合動力系統監測控制策略
上海盈蓓德智能科技有限公司依托可靠的品質,旗下品牌盈蓓德,西門子以高質量的服務獲得廣大受眾的青睞。盈蓓德科技經營業績遍布國內諸多地區地區,業務布局涵蓋智能在線監診系統,西門子Anovis,聲音與振動分析,主動減振降噪系統等板塊。我們在發展業務的同時,進一步推動了品牌價值完善。隨著業務能力的增長,以及品牌價值的提升,也逐漸形成電工電氣綜合一體化能力。公司坐落于上海市閔行區新龍路1333號28幢328室,業務覆蓋于全國多個省市和地區。持續多年業務創收,進一步為當地經濟、社會協調發展做出了貢獻。